Researchers at the University of Illinois have developed improvements to their innovative photonic integrated circuit (PIC) design, which features three-dimensional...
Researchers at the University of Illinois have developed improvements to their innovative photonic integrated circuit (PIC) design, which features three-dimensional subsurface networks of optical components (UIUC ref. no. 2017-212). The paradigm, called "volumetric photonic integrated circuits" (VPIC), addresses the bottleneck of large surface area requirements faced by conventional PICs by embedding the networks vertically within a semiconductor (e.g., porous silicon) material.
The present improvements include a variety of new subsurface components which exhibit low loss and high total efficiency competitive with silicon photonics. Components include high Q microrings; lenses and waveguides for efficient coupling; Mach Zehnder interferometers; loop mirrors; and distributed Bragg reflectors.
University of Illinois Urbana-Champaign researchers Songbin Gong, Ruochen Lu, Yansong Yang, and Steffen Link have fabricated an acoustic filter that functions with high...
University of Illinois Urbana-Champaign researchers Songbin Gong, Ruochen Lu, Yansong Yang, and Steffen Link have fabricated an acoustic filter that functions with high fractional bandwidth and low signal loss at gigahertz frequencies necessary for emerging 5G new radio technologies.
The acoustic filter is suitable for 5G mobile devices (e.g. smart phones), which will employ wavebands of higher frequencies than 4G technology. The device maintains small proportions without the fabrication challenges seen from scaling existing acoustic filter components present in 4G devices.
The filter employs a double layer of thin-film lithium niobate, a piezoelectric material, which serves to convert mechanical energy (radio waves) to electronic signals in 5G devices with better performance in the 3-6 GHz range than existing technologies.