Molecular Biomedical Engineering

 

These patent-pending optical contrast agents and molecular detection technologies were developed to enhance the ability of optical coherence tomography (OCT) to non-invasively map molecules in living specimens and diagnose disease where it starts. OCT utilizes low-coherence interferometry to measure the intensity of reflected or backscattered light to form images with micrometer resolution, is readily integrated with existing optical instrumentation and has application across a wide range of biological, medical, surgical, and non-biological specialties.

Molecular Detection Technology

Nonlinear Interferometric Vibrational Imaging (NIVI) NIVI offers unmatched capabilities in biomedical imaging by performing non-invasive three-dimensional molecular imaging of living specimens and tissue. This imaging platform interferometrically detects nonlinear optical signals based on the vibrational states of atomic bonds within target molecules and may be used for diagnostics and for delivery of focused ablative treatment.

Benefits 

  • Images a range of molecular species simultaneously with a single instrument
  • Requires no exogenous labels to detect specific molecules
  • Permits precise density determination without background signals
  • Allows 3-D discrimination of molecular density and enhancement

Fiber Optic OCT

OCT Enhanced Biopsy Needle: This concept-proven device provides manufacturers of soft tissue biopsy needles with the option to integrate a fiber optic OCT light delivery and measurement apparatus into the needle tip. By monitoring the optical properties of tissue via this new imaging needle, clinicians can improve the accuracy of both tumor localization and diagnosis.

Benefits

  • Greater precision than stereotaxis (X-ray) and sonography (ultrasound)
  • Measure refractive index and attenuation of sample in-vivo in real time
  • Compatible with standard biopsy and OCT systems

Broad Focus OCT Imaging Algorithm

Interferometric Synthetic Aperture Microscopy (ISAM) ISAM offers revolutionary technology advancement in OCT and other microscopy methods. With a single pass, the algorithm is able to extend the range over which devices can scan an image by integrating data taken from non-focal point areas in addition to the focal region. Integration of the ISAM technology into catheters or arterial imaging devices would add significant value above the existing image rendering paradigms.

Benefits

  • Produces functional imagery from formerly unusable data
  • Maintains quality resolution in high depth-of-field and 3-D applications
  • Tolerates errors in defocus
  • Employs digital processing to compensate for instrument and user error

Optical Contrast Agents

Plasmon-Resonant Nanoparticles: This class of nanospheres and nanorods exhibit tunable plasmon resonances and can be engineered to specific sizes with strong absorption or scattering at select wavelengths - most notably the near-infrared range - for enhancing the sensitivity and scope of OCT.

Benefits

  • Perform diagnostic and therapeutic functions
  • Capable of targeting specific cells and cell structures
  • Tunable optical properties
  • Variable resonance depending on particle orientation

Optical Contrast Agents for Optically Modifying Incident Radiation

Magnetically & Electrically Inducible Modulated Agents: Iron-oxide in microspheres, on nanorods, or as free nanoparticles offers researchers and users precise control over contrast agent position within a sample and orientation within tissue. The magnetic agents can be manufactured to a variety of sizes and can enhance OCT data. Similarly, electrically-inducible particles are capable of altering the spectral characteristics of incident radiation.

Benefits

  • Wavelength- & Media- specific optimization
  • Modifiable protein coat
  • Non-toxic biocompatibility for in-vivo applications

Optical Contrast Agents

Near-Infrared Dyes for Structural and Spectroscopic OCT: While the majority of contrast agents are engineered to alter the intensity of backscattered light, this class of near-infrared dyes was designed to transform spectral wavelength, making in situ and in vivo three-dimensional imaging a reality. 

Benefits

  • Cell-specific targeting
  • Strong light penetration of tissue at NIR wavelengths
  • High resolution images
  • Compatible with existing dyes