Reporting

The Office of Technology Management (OTM) reports to Dr. David L. Chicoine, the Vice President for Technology and Economic Development and also works closely with the Vice Chancellor for Research, Dr. Charles Zukoski.

Mission

To encourage innovation, enhance research, and facilitate economic development through the effective management, transfer and commercialization of University-based technologies and intellectual property.

Vision

Become one of the top ten technology transfer offices in the United States, generating revenue for the inventors and the University to support research and education, and through the transfer of new technologies, improve the well being of people and the economies of our local communities and of our State, region, and nation.

Long-term goals

As part of a five-year planning process, the OTM has identified four major long-term goals and the strategies needed to meet them. Accomplishment of these goals will position the office as one of the premier tech transfer offices in the country. The goals are: 1) to achieve increases in key metrics: disclosures, licenses & options, start-up companies formed, U.S. patent applications filed, and U.S. patents issued. 2) Generate four times the annual operating budget (excluding patent protect working capital spending) in revenues from license income and the sale of OTM equity in start-ups. 3) Meet or exceed average benchmarks of selected peer universities using survey data from the Association of University Technology Managers (AUTM). 4) Remain one of the top twenty universities in the ranking of U.S. patents issued (this number will include UIC issued patents, since all Illinois patents are owned by the Board of Trustees of the University of Illinois).

Just as important as the office’s metric goals for commercialization is our commitment to providing services that help transfer University innovations for the greater public good, whether through material transfer agreements, open source licensing and many other methods, to fulfill our role as a steward of the University’s intellectual property.
I am pleased to present this fiscal 2006 annual report for the Office of Technology Management. Our purpose in preparing this report is to show not only the level of activity in fiscal 2006, but how that activity measures against past years and whether our office is on track to meet our aggressive future goals. Our analysis shows us to be performing in a way that meets both short and long term expectations.

When I reflect back on 2006, relationship building was a theme common to many of our activities.

In the past year we have continued to strengthen our ties with faculty and campus, identifying innovations with commercial potential and providing services related to all aspects of intellectual property. We are working more closely with campus corporate relations officers as well, combining our efforts in ways that increase opportunities to bring in potential industry partners.

Our Technology Managers interacted with hundreds of industry contacts, attended more than 18 conferences, and exhibited at 12 of those. We met with more than 20 corporations visiting campus, sent out our newsletter three times, experimented with magazine advertising, updated our graphic identity and continued posting our technology descriptions on our own website and other commercialization partnering websites.

We’ve also been doing our homework to ensure we operate using best practices. We’ve been communicating with peers at other institutions to address common issues in industry-university relations and to ensure that our policies are consistent, flexible, and fair.

In conclusion, I would like to thank all of the OTM staff for their commitment and hard-work as we continue to advance toward our goals. I hope you find the information in this report useful, and, as with all our efforts, I welcome your feedback on ways we can improve our service.

OTM Board of Advisors

The office’s advisory board met 7 times in fiscal 2006 to provide feedback and guidance on OTM activity. I’d like to thank them for their continued support and guidance.

Fiscal 2006 Members of the Board

<table>
<thead>
<tr>
<th>Bruce Vojak, Chair</th>
<th>Wen-mei Hwu</th>
<th>Tom Overbye</th>
</tr>
</thead>
<tbody>
<tr>
<td>Van Anderson</td>
<td>Philip Krein</td>
<td>Jennifer Quirk</td>
</tr>
<tr>
<td>Hans Blaschek</td>
<td>Mary Ann Lila</td>
<td>Ken Suslick</td>
</tr>
<tr>
<td>Stephen Boppart</td>
<td>Paul Magelli</td>
<td>Molly Tracy</td>
</tr>
<tr>
<td>Albert Feng</td>
<td>Mark Nolan</td>
<td>Huimin Zhao</td>
</tr>
<tr>
<td>James Kirkpatrick</td>
<td>Romana Nowak</td>
<td></td>
</tr>
</tbody>
</table>
About the Office of Technology Management

The Office of Technology Management (OTM) currently has 22 full-time equivalent employees, 11 part-time student interns, and a cadre of outside business and legal consultants at its disposal. The office has adopted a documented, systematic and timely process for the analysis, protection, and commercialization of university intellectual property. In addition, the OTM has developed ongoing productive relationships with faculty, staff and industry. Due to the foresight, efforts and support from campus and University leadership, and the University’s Board of Trustees, the OTM is surrounded by a more vibrant entrepreneurial campus environment than ever before. This environment facilitates technology transfer activities, the formation of start-up companies, and local and state economic development.

Technology Portfolio

Technologies by Type
As of fiscal 2006, the Office of Technology Management has a portfolio of more than 1,200 active technologies.

Patents by Type
As of fiscal 2006, UIUC holds more than 321 active U.S. patents.
Process

Intellectual Property Disclosures
The OTM actively reaches out to faculty to encourage disclosures.

Screening Evaluation
Within 6-8 weeks of receiving a disclosure, a technology manager presents a business-case analysis, called a screening evaluation, to the office with a recommended course of action regarding commercialization. The results of the screening evaluation are then presented to the inventors.

Commercial Transfer
Assess
When warranted, the office engages the services of outside consultants to connect with industry experts and add to the OTM’s understanding of the potential market for the technology and help determine further patenting and marketing actions.

Marketing
Considerable time and resources are devoted to researching and contacting the best possible licensing partners.

License Negotiations
The OTM conducts license negotiations with interested industry partners, taking care to formulate the best possible contracts.

License Compliance
After a technology is licensed, the OTM continues to monitor the licensing organization to ensure all terms and conditions are adhered to.

Non-commercial Transfer
The OTM develops other agreements that facilitate non-commercial technology transfer (such as material transfers, academic-use, or open source licenses.) Such agreements enable the technology or invention to be utilized while still preserving certain rights for commercialization in the future.

Fiscal 2006 Snapshot

<table>
<thead>
<tr>
<th>Disclosures</th>
<th>195</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. Patents Filed</td>
<td>142</td>
</tr>
<tr>
<td>U.S. Patents Issued</td>
<td>24</td>
</tr>
<tr>
<td>Licenses & Options</td>
<td>52</td>
</tr>
<tr>
<td>Licenses to Start-ups</td>
<td>5</td>
</tr>
<tr>
<td>Income in millions</td>
<td>$6.404</td>
</tr>
</tbody>
</table>
Invention Disclosures

Campus Invention Disclosures: FY99 - FY06

In the last two years, the OTM has initiated Intellectual Property (IP) mining projects with centers and institutes to help them identify and disclose innovation. Projects have already been completed with the Center for Simulation of Advanced Rockets (CSAR) in 2005, and the Center for Nanoscale Chemical-Electrical-Mechanical Manufacturing Systems (Nano-CEMMS), and the Beckman Institute for Advanced Science and Technology in 2006.

In addition to generating disclosures, the IP mining project have been a valuable method for educating faculty about the commercialization process.

IP Mining Project Results
- CSAR (2005): 22 disclosures, 4 evaluation licenses, 1 license, and a possible spin-out company
- Nano-CEMMS (2006): 5 disclosures received, and 5 anticipated
- Beckman Institute (2006): 1 disclosure received, and 3 anticipated
- Creation of an IP Mining tool to track disclosures, publications, patents, and ongoing research

Please contact our office if you are interested in discussing a disclosure mining project for your department, unit, or research center.

Trends in Invention Disclosures: FY90 - FY06

Invention disclosures, like all technology transfer activity, fluctuate from year to year. Applying a moving average trendline over sixteen years shows that regardless of the yearly variances, the rate of disclosures is trending upward and the OTM is on track to meet its long term goals.
Fiscal 2006 Disclosures by Type*

Aerospace 1
Agricultural Engineering and Equipment 1
Agricultural Processing 4
Animal Sciences and Veterinary Medicine 8
Biological Sciences, Biochemistry and Biophysics 3
Biotechnology and Biomedical Engineering 16
Chemistry 7
Civil Engineering 2
Computer Engineering 1
Computer Systems 5
Databases and Information Systems 5
Devices, Micro-Devices & Equipment 2
Diagnostics & Sensors 4
Educational 1
Electrical Engineering 6
Energy 5
Environment 1
Food & Nutrition 2
Graphics, Visualization and Virtual Reality 3
Imaging & Screening 3
Industrial & Mechanical Engineering 7
Manufacturing 2
Materials 13
Materials Science 4
Micro & Nanotechnologies 7
Microfluidics 2
Optics, Photonics, and Lasers 5
Pharmaceuticals and therapeutics 12
Plant Sciences and Germplasm 11
Print 1
Scientific Computing 2
Security 5
Semiconductor 8
Sensors-Industrial 1
Software 27
Tools 6
Video and Audio 2

*Types are determined by OTM and used on our website and flyers to facilitate industry identification of technologies of interest.
In the past year, our experience has been that the U.S. Patent Office has issued more office actions in the course of their examinations. As a result, it has taken longer for our patents to issue thus our number of issued patents dropped in 2006.

The OTM has a broad and proactive patenting philosophy that preserves the maximum value of the University’s portfolio.

Although patent activity fluctuates from year to year, looking at patent activity for the past sixteen years shows the OTM is on track to meet long-term goals.
A patent is a property right granted by the United States Government that allows inventors (and patent owners) to receive value for their intellectual innovations by providing the patent holder with a time-limited (20 year) exclusive monopoly. In exchange, the patent describing the new innovation is published, thereby advancing the state of the general knowledge and contributing to growth in that field.

In the US, patent applications can be of two general types: Provisional or non-provisional (“regular” applications). Provisional applications are often used to file quickly when necessary to preserve the right to file US or foreign applications at a later time. Provisional applications can be filed without claims, inventorship determinations or formal papers. They merely “hold the date of filing”, however, and will not result in a patent issued by the US Patent and Trademark Office. They must be followed up with a regular US patent filing within a year’s time in order to obtain patent protection.

Patent property rights are like other property, and can be sold, leased or transferred to others for “royalties”, most often, through licensing.

Fiscal 2006 Patent Activity

U.S. Applications Filed
- Provisional Filings 64
- Non-provisional Filings 78
- Total 142

Foreign (National) Filings 88

International Applications (PCT) 42

U.S. Patents Issued 24

Fiscal 2006 U.S. Patents by College / Unit

<table>
<thead>
<tr>
<th>Engineering</th>
<th>LAS</th>
<th>Beckman</th>
<th>ACES</th>
<th>Other</th>
<th>NCSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filed</td>
<td>121</td>
<td>48</td>
<td>37</td>
<td>19</td>
<td>12</td>
</tr>
<tr>
<td>Issued</td>
<td>18</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>

Note: Patents may have multiple inventions and inventors may be associated with more than one college or unit. Therefore, patents reported in this table may be counted multiple times, once for each associated college or unit.
Patent Activity

Fiscal 2006 Issued U.S. Patents

<table>
<thead>
<tr>
<th>Inventors</th>
<th>College/Organization*</th>
<th>Patent Number</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milton Feng, David Becher, Richard Chan, Nick Holonyak, Shyh-Chiang Shen</td>
<td>Engineering</td>
<td>6,919,784</td>
<td>High Cycle Mems Device</td>
</tr>
<tr>
<td>Chang Liu, Jose Schute-Aine, Jun Zou</td>
<td>Beckman Institute, Engineering</td>
<td>6,922,127</td>
<td>Raised On-Chip Inductor and Method of Manufacturing Same</td>
</tr>
<tr>
<td>Chang Liu, Jack Chen</td>
<td>Beckman Institute, Engineering</td>
<td>6,923,054</td>
<td>Microscale Out-of-Plane Anemometer</td>
</tr>
<tr>
<td>Albert Feng, Robert Bilger, Douglas Jones, Charissa Lansing, Chen Liu, William O’Brien, Bruce Wheeler</td>
<td>Beckman Institute, Engineering, LAS</td>
<td>6,978,159</td>
<td>Binaural Signal Processing Techniques</td>
</tr>
<tr>
<td>Munir Nayfeh, Joel Therrien, Gennadiy Belomoin</td>
<td>Engineering</td>
<td>6,984,842</td>
<td>Silicon Nanoparticle Field Effect Transistor and Transistor Memory</td>
</tr>
<tr>
<td>Albert Feng, Chen Liu, Robert Bilger, Douglas Jones, Charissa Lansing, William O’Brien, Bruce Wheeler</td>
<td>Beckman Institute, Engineering, LAS</td>
<td>6,987,856</td>
<td>Binaural Signal Processing Technologies</td>
</tr>
<tr>
<td>Munir Nayfeh, Osama Nayfeh</td>
<td>Engineering</td>
<td>6,992,298</td>
<td>Coated Spherical Silicon Nanoparticle Thin Film UV Detector with UV Response and Method of Making</td>
</tr>
<tr>
<td>Russell Jamison, Joseph Cesarano, Jennifer Dellinger</td>
<td>Engineering, IGB, Sandia National Laboratories</td>
<td>6,993,406</td>
<td>Method for Making a Biocompatible Scaffold</td>
</tr>
<tr>
<td>Milton Feng, Richard Chan</td>
<td>Engineering</td>
<td>6,998,946</td>
<td>High Cycle Cantilever MEMS Device</td>
</tr>
<tr>
<td>Munir Nayfeh, Gennadiy Belomoin, Satish Rao, Sahraoui Chaieb, Joel Therrien</td>
<td>Engineering</td>
<td>7,001,578</td>
<td>Family of Discretely Sized Silicon Nanoparticles and Method for Producing the Same</td>
</tr>
<tr>
<td>Nandakishore Rajagopalan, Todd Rusk, Robert Sanford</td>
<td>Engineering, WMRC</td>
<td>7,011,758</td>
<td>Methods and Systems for Membrane Testing</td>
</tr>
<tr>
<td>Qin Zhang, Yingjie Gao, Xiangdong Kong</td>
<td>ACES</td>
<td>7,013,223</td>
<td>Method and Apparatus for Analyzing Performance of a Hydraulic Pump</td>
</tr>
<tr>
<td>Andrew Singer, Ralph Koetter</td>
<td>Engineering</td>
<td>7,016,440</td>
<td>Iterative MMSE Equalization-Decoder Soft Information Exchange Decoding Method & Device</td>
</tr>
<tr>
<td>Kuang-Chien Hsieh, Keh-Yung Cheng</td>
<td>Engineering</td>
<td>7,027,225</td>
<td>Substrate Independent Distributed Bragg Reflector and Formation Method</td>
</tr>
<tr>
<td>Inventors</td>
<td>College/Organization*</td>
<td>Patent Number</td>
<td>Title</td>
</tr>
<tr>
<td>--</td>
<td>------------------------</td>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>Philip Krein</td>
<td>Engineering</td>
<td>7,030,512</td>
<td>Dynamic Current Sharing DC-DC Switching Power Supply</td>
</tr>
<tr>
<td>Munir Cheryan</td>
<td>ACES</td>
<td>7,045,607</td>
<td>Method and System for Extraction of Zein and/or Oil From Corn</td>
</tr>
<tr>
<td>Robert Hornbaker, David Pointer,</td>
<td>ACES, NCSA</td>
<td>7,047,103</td>
<td>Method and Systems for Tracking Grain</td>
</tr>
<tr>
<td>Volodymyr Kindratenko</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>David Goldberg, Martin Pelikan</td>
<td>Engineering</td>
<td>7,047,169</td>
<td>Method for Optimizing a Solution Set</td>
</tr>
<tr>
<td>Stephen Sligar, Timothy Bayburt,</td>
<td>Beckman Institute, LAS</td>
<td>7,048,949</td>
<td>Membrane Scaffold Proteins</td>
</tr>
<tr>
<td>Jennifer Lewis, Glen Kirby</td>
<td>Engineering, WR Grace</td>
<td>7,053,125</td>
<td>Controlled Dispersion of Colloidal Suspensions by Comb Polymers</td>
</tr>
<tr>
<td>Patent application donated by Monsanto</td>
<td>ACES</td>
<td>7,058,197</td>
<td>Multi-Variable Model for Identifying Crop Response Zones in a Field</td>
</tr>
<tr>
<td>Michael Philpott, Rolf Sebastian</td>
<td>Engineering</td>
<td>7,065,420</td>
<td>Integrated Real-Time Feature Based Costing</td>
</tr>
<tr>
<td>Schrader, Gautam Subbarao, Eric Hiller</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schulyer Korban</td>
<td>ACES</td>
<td>PP16,622</td>
<td>Apple Tree Named “CO-OP 39”</td>
</tr>
<tr>
<td>Robert Warwick, Kenneth Rinehart,</td>
<td>LAS</td>
<td>RE38793</td>
<td>Spisulosine</td>
</tr>
<tr>
<td>Nancy Fregeau Gallagher</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Joint owners identified in italics
The University licenses its technologies to companies that demonstrate the capability to develop the technology into commercial products or services and the willingness to share the downstream benefit of commercial use of the technology with the University (e.g. through equity, royalties from sales, etc).

Total Fiscal 2006 Agreements: 285

- Licenses: 34
- Options: 18
- Confidentiality/Non-disclosure: 59
- Material transfer/Evaluation: 75
- Other: 99

Licensed technologies in fiscal 2006 include a diagnostic tool for bovine genetic mutations, genetic algorithms, a method to transform waste materials into oil, a cancer fighting compound, and interactive educational software.

Of the 34 licenses executed, 5 were signed with start-up companies. In the past 5 fiscal years, licenses were signed with 33 start-up companies.
Fiscal 2006 Licenses & Options by College / Unit

<table>
<thead>
<tr>
<th>Engineering</th>
<th>LAS</th>
<th>ACES</th>
<th>Other</th>
<th>NCSA</th>
<th>Beckman</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>14</td>
<td>9</td>
<td>6</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Note, licenses may involve more than one inventor and inventors may be associated with more than one college or unit. As a result, licenses in this table are counted multiple times, once for each associated college or unit.

Start-up companies licensed in fiscal 2006

Armored Computing

Radius
A pharmaceutical company specializing in the discovery and development of drug therapies for osteoporosis and women’s health. http://www.radiuspharm.com

SFM
Provides services to its client companies utilizing the a toolset software package created in the department of mechanical engineering that assists in automated design rule checking of printed circuit assemblies/boards. www.sfmtech.com

Open Integration Incorporated (Open II)
Offers enhanced software, implementation services, support, and training for the Open EAI-based Enterprise Service Bus. http://www.openii.com

Visual Information Technologies Inc.
Focuses on internet and enterprise search applications, based on ViSIT software which organizes internet searches graphically and displays the results. http://www.oowah.com
Licensing Income

Royalties and Income: FY99 - FY06 (in millions)

Fiscal 2006 revenue included a $3.1 million royalty settlement with a Fortune 500 company.

Income for fiscal years 1999-2005 includes reimbursement of patent expenses and material preparation costs.

Trends in Revenue: FY90 - FY06

Applying a moving average trendline to the past sixteen year’s activity shows the OTM is on track to meet long-term goals.
Fiscal 2006 Actual Expenditures

<table>
<thead>
<tr>
<th>Category</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salaries</td>
<td>$1,356,841</td>
</tr>
<tr>
<td>Total Operating Expenses</td>
<td>$740,377</td>
</tr>
<tr>
<td>Patent Protection Expenses</td>
<td>$2,361,439</td>
</tr>
<tr>
<td>Total Fiscal 2006 Expenditures</td>
<td>$4,458,657</td>
</tr>
</tbody>
</table>

The Office of Technology Management receives reimbursement for patenting expenses from the royalties and income received for its technologies and also through licensing agreements where patent reimbursement is included in the terms.

In fiscal 2006, patent cost reimbursement increased dramatically. This is largely due to the efforts of OTM staff monitoring license compliance and recovering monies due.
Income Distribution

Income distribution in any given year does not map exactly to the income received for that year. There is a lag time between receipt of income and the actual distribution. Often, lag time is due to requirements for finalizing sharing agreements among multiple inventors.

Income available for distribution equals royalties and revenue minus all expenses attributable to IP commercialization, including patent expenses. It is possible for the income available for distribution in a fiscal year to be higher than the royalties and revenue for that year, because it may also include undistributed income from prior years.

<table>
<thead>
<tr>
<th>Fiscal Year</th>
<th>Pre-litigation withhold (1)</th>
<th>Other share (2)</th>
<th>Inventor share (3)</th>
<th>University share (4)</th>
<th>Distributed to inventors units (5)</th>
<th>Year-End balance of undistributed income (6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FY2003</td>
<td>$78,640</td>
<td>$1,262,766</td>
<td>$1,670,678</td>
<td>$703,043</td>
<td>$1,078,568</td>
<td>$1,078,568</td>
</tr>
<tr>
<td>FY2004</td>
<td>$60,911</td>
<td>$705,480</td>
<td>$731,395</td>
<td>$460,566</td>
<td>$1,337,965</td>
<td>$1,337,965</td>
</tr>
<tr>
<td>FY2005</td>
<td>$149,952</td>
<td>$5,681</td>
<td>$1,307,238</td>
<td>$1,619,610</td>
<td>$891,555</td>
<td>$386,622</td>
</tr>
<tr>
<td>FY2006</td>
<td>$209,356</td>
<td>$52,035</td>
<td>$1,141,158</td>
<td>$1,818,234</td>
<td>$1,285,484</td>
<td>$254,124</td>
</tr>
</tbody>
</table>

(1) Since 2005, 5% of the income received from a license is put into a litigation fund
(2) Other share primarily results from another institution’s share from a jointly owned invention.
(3) If there is more than one inventor, the 40% of revenue is shared among all inventors.
(4) The university share goes to the Office of the Vice Chancellor for Research.
(5) The unit distribution goes to the inventor’s department. In cases involving multiple departments and inventors, the proceeds are shared between them with a split they determine.
(6) Undistributed income results when there is no proceeds distribution agreement in place or agreement cannot be reached among inventors and units; the money is held in this account until agreement is achieved.

Units receiving more than $1,000 in distributions in fiscal 2006 (alphabetical listing)

- Natural Resources & Environmental Sciences
- Agricultural & Consumer Economics
- Agricultural Engineering
- Administrative Information Technology Services/UI Integrate
- Animal Sciences
- Applied Life Studies
- Biochemistry
- Chemical Engineering
- Chemistry
- Civil & Environmental Engineering
- Center for Study Reading
- Coordinated Science Lab
- Crop Sciences
- Disability Resources and Education
- Electrical and Computer Engineering
- Geology
- Library & Information Science
- National Center for Supercomputing Applications
- Office of the Vice Chancellor for Research
- Physics
- Provost & VC Academic
- School of Chemical Sciences
- University Library
- VET/Vet Pathology
The following list of inventions have each earned more than $1 million in royalties and income over their lifetime. Income was compiled from records going back to 1970.

Canine Babesiosis Vaccine
Researchers at UIUC developed a vaccine for canine babesiosis, a tick-borne disease, prevalent in New England. The technology was licensed to a French firm in 1980 and marketed as Pirodog®.

Chiral Transition Metal Based Catalyst for the Asymmetric Epoxidation of Unfunctionalized Olefins with Unprecedented Selectivity
This technology, which has been licensed to chemical companies, is a chemical preparation tool used in the production of many drugs, including the class of drugs known as NSAIDS (Non-steroidal anti-inflammatory drugs).

Geochemists Workbench®
Geochemists Workbench® is currently in use at more than 500 companies, universities, and research institutes globally. The Geochemist’s Workbench® (GWB) is a robust module-based software program that provides fast graphical solutions for manipulating chemical reaction calculations, calculating stability diagrams and equilibrium states of natural waters, tracing reaction processes, and plotting the results of these calculations.

High Oil Corn & High-Oil Corn Long-term selection lines
High Oil provides better feed for livestock and poultry and yields more energy per bushel of corn.

Layer Disordering technologies
These technologies introduced impurity-induced layer disordering, and invented a process that enables the formation of high-quality oxide layers on aluminum III-V compound semiconductors. These technologies enabled the formation of superior laser diodes and lasers; applications include semiconductor devices, laser printers, fiber optic communications, microelectronic devices, and more.

Native Oxide
Native Oxide is a process that enables the formation of high-quality oxide layers on aluminum III-V compound semiconductors. Applications for this technology include semiconductor devices, laser printers, fiber optic communications, microelectronic devices, and more.

Mosaic®
This well-known web browser was developed at the University of Illinois’ National Center for Supercomputing Applications (NCSA). Mosaic® made the internet user-friendly and is the basis of many internet browsers in use today. Two of the developers went on to found Netscape. Mosaic was also licensed by a UIUC start-up, Spyglass, who later licensed the technology to Microsoft where it became the basis for Microsoft’s Internet Explorer.

Plasma Display Panel & Improvements
Researchers at UIUC invented the flat panel display in the 1960’s, the forerunner of today’s high-definition flat panel television monitors. The flat-panel plasma monitor invention in the 1960s was a spin-off of work that ECE and Coordinated Science Lab faculty were doing on the U of I’s famed PLATO system. PLATO, or Programmed Logic for Automatic Teaching Operations, had the distinction of also being a “first.” It was the first computer-assisted instructional program in the world. The three inventors even won an Emmy Award in 2002 for their work.

A later improvement to this technology, by a different UIUC researcher, enabled the flat panel televisions in use today.

PLATO®
This computer interaction system (hardware, system software, and courses/games) developed in the mid 1970s opened the door for interactive computer education prior to PCs. It was and is still used in schools, colleges, prisons and company training programs. It allowed a network of terminals to be connected to a single large central processor.

NovaNet Courseware
Educational software originally developed for the PLATO system and adapted for use with personal computers.

Strained Layer Transistor
The strained layer transistor enables superior ultra high frequency sensitive detection that doesn’t require cryogenic cooling. It is used in smaller 18” satellite dishes.

Mosaic®
This well-known web browser was developed at the University of Illinois’ National Center for Supercomputing Applications (NCSA). Mosaic® made the internet user-friendly and is the basis of many internet browsers in use today. Two of the developers went on to found Netscape. Mosaic was also licensed by a UIUC start-up, Spyglass, who later licensed the technology to Microsoft where it became the basis for Microsoft’s Internet Explorer.

Layer Disordering technologies
These technologies introduced impurity-induced layer disordering, and invented a process that enables the formation of high-quality oxide layers on aluminum III-V compound semiconductors. These technologies enabled the formation of superior laser diodes and lasers; applications include semiconductor devices, laser printers, fiber optic communications, microelectronic devices, and more.

Native Oxide
Native Oxide is a process that enables the formation of high-quality oxide layers on aluminum III-V compound semiconductors. Applications for this technology include semiconductor devices, laser printers, fiber optic communications, microelectronic devices, and more.
Lesley Millar, Director of the Office of Technology Management, is responsible for leading the effort to identify, protect, market, and license the University’s intellectual property as well as helping advance the University’s economic development goals.

217.333.6807; millar@uiuc.edu

Mark Kaczor is the Senior Technology Manager responsible for technologies from the College of Engineering, the Beckman Institute, and the State Surveys.

217.265.0548; m-kaczor@uiuc.edu

Sean Reeder is the Technology Manager responsible for technologies from the College of Engineering, the Beckman Institute, and the State Surveys.

217.244.9104; sdreeder@uiuc.edu

David Washburn is the Senior Technology Manager specializing in software and copyright technologies originating from Computer Science, the Beckman Institute and the College of Engineering; he is also the liaison for the College of Communications and the College of Education.

217.265.0778; dwashbur@uiuc.edu

John McEntire is the Senior Technology Manager and Copyright, Software and Trademark Officer who manages software and copyright technologies from across campus and oversees all technologies arising from the National Center for Supercomputing Applications (NCSA), the College of Business, the College of Fine and Applied Arts, the Graduate School of Library and Information Sciences and the University Library.

217.333.3715; jmcentir@uiuc.edu

Roger VanHoy is the Senior Technology Manager responsible for technologies arising from the College of Liberal Arts and Sciences, the College of Medicine at UIUC, and the Institute of Aviation.

217.244.1275; r-vanhoy@uiuc.edu

Eric Payne is the Technology manager responsible for technologies arising from the College of Liberal Arts and Sciences, and the College of Agriculture, Consumer and Environmental Sciences.

217.265.6212; ecpayne@uiuc.edu

Dick Loe is the Senior Technology Manager responsible for technologies arising from the College of Agriculture, Consumer, and Environmental Sciences. He is also responsible for the College of Fine and Applied Arts and the College of Veterinary Medicine.

217.333.7198; loe@uiuc.edu

Delphine Kranz, Associate Director of the Office of Technology Management, oversees office operations and develops strategies for the evaluation, protection, marketing, and licensing of University technologies.

217.333.6807; delkranz@uiuc.edu
Office Staff

Administration
Billie Scales, Administrative Secretary
scales@uiuc.edu
Carla Corzine, Technology Manager
Secretary
ccorzine@uiuc.edu
Elizabeth Schleef, Clerk
easchlee@uiuc.edu

Finance
Melissa Miner, Assistant Vice President for Technology and Economic Development
maminer@uillinois.edu
Todd Creason, Program Administrative Assistant
creason@uiuc.edu
June Luna, Account Tech II
juneluna@uiuc.edu

Information Systems
Mike Bohlmann, Manager
mikeb@uiuc.edu

Legal
Karen Etheridge, University Counsel
ketherid@uillinois.edu
Elizabeth Robischon,
University Counsel
brobisch@uillinois.edu
Jane Reid, Paralegal &
Compliance Coordinator
janereid@uiuc.edu
Donna Wilm, Legal Secretary
dwilm@uiuc.edu

Marketing
Nicole Nair, Marketing & Communications Specialist
nnair@uiuc.edu

Patent
Bill Colburn, Patent Agent
wcolburn@uiuc.edu
Tracy Hunter, Patent Secretary
tracyh@uiuc.edu

Student Interns (2006-2007)

Commercialization Analysts (degree candidate)
Joe Bradley (PhD: Engineering)
Matthew Ennis (JD)
Li-Anne Foo (MBA)
Adnan Husain (JD/MD)
Aileen Tien (JD/MS)
Chiao-Wei Wang (MBA)
Peiyong Weng (JD)

LIS
Firouzeh Tahiripour (LIS)

IT
Raj Sodhi (BS: Computer Science)

Journalism
Scott Gresham (MS: Journalism)
Sam Smith, Summer 2006

Graphic Design & Marketing
Sarah Beard, Summer 2006
Mona Haggag (MBA)

Data for this report was compiled through the significant efforts of Mike Bohlmann, Bill Colburn, Todd Creason, Del Kranz, and Melissa Miner. Written and produced by Nicole Nair, Sarah Beard, and Mona Haggag.